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Synopsis
The theory of the collective properties of the nuclear shell model has progressed recently 

due to the introduction of the simple pairing force to simulate the residual nucleonic interaction. 
Working within the framework of the adiabatic approximation, the present paper studies the 
consequences of this model for the y-dependent terms of the nuclear potential energy surface. The 
simplified case of nucleons in a harmonic oscillator potential is considered first. Then, the energies 
and transition probabilities are calculated for y-vibrations of deformed nuclei of axial symmetric 
shape. In addition, numerical calculations, based on realistic wave functions for nucleons in 
deformed nuclei, have been performed in a few cases and are compared with empirical data.
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I. Introduction

In recent years, promising progress has been made in deriving the nuclear 
collective properties, starting from a description in terms of independent­
particle motion.

On the one hand, it has been recognized that the shell model binding 
field may be associated with the effect of the long range part of the nucleonic 
interaction. In particular, the deformations of ellipsoidal shape can be shown 
to be a consequence of the quadrupole component of the effective two-body 
force* 1)* 2). ()n the other hand, it was recognized that there are important 
effects of this force which cannot be incorporated into a smoothly varying 
binding field, such as the inertial properties of the collective motion* 3) or 
the potential energy of the nuclear deformation.

To represent this “residual" force, an interaction of especially simple 
properties has been suggested* 4). This is the so-called “pairing force" which 
is analogous to that used in the recent theory of superconductivity* 5), and 
which is a generalization of the force in terms of which seniority is defined* 6). 
Preliminary investigations have shown that such a nuclear model contains 
many of the qualitative features of the observed nuclear spectra* 7)* 8)* 9)* 10). 
A more quantitative test of this model has been performed for nuclei in 
the regions near closed shells* 11).

The aim of the present investigation is to study in greater detail some 
of the features of the nuclear potential energy surface which follow from 
this model. In particular, we consider the dependence on the parameter y, 
which describes the departure from axial symmetry of an ellipsoidal nuclear 
deformation. We also investigate the properties of vibrations in the /-co­
ordinate, which are expected for nuclei of spheroidal shape.

For a quantitative analysis of the collective nuclear properties it is 
necessary to start from a nuclear shell model with the appropriate single­
particle level spacings and wave functions. However, in order to explore 
some of the qualitative features, we first consider the simplified case of a 
harmonic oscillator well. Subsequently, we present some calculations based 
on a realistic single-particle spectrum, and compare the results with ex­
perimental data.

1*
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IL Formulation of the model

The basic assumption of many studies of nuclear structure is that it is 
sufficient to consider the degrees of freedom associated with the particles 
outside closed shells, the particles within closed shells manifesting them­
selves only through the Pauli principle and through a renormalization of 
the effective interparticle force.

In this chapter, we give (a) a brief description of the solution of the 
problem of identical particles moving in a certain shell coupled by the 
pairing force; (b) a discussion of the deformed part of the single-particle 
field; and (c) the calculation of the potential energy surface and mass 
parameter.

a) The independent quasi-particle approximation.
We assume that the matrix of the single-particle Hamiltonian has been 

diagonalized and that ev is the eigenvalue corresponding to the degenerate 
single-particle states labelled by v+ and v-. These states are related by 
the operation of time reversal. Using the formalism of second quantization, 
the total single-particle Hamiltonian can be written

~ £V (Cl’ + Cl>+ + 0)
V

Here, cj and cv are, respectively, the creation and annihilation operators 
for the single-particle slate v. They obey the usual anti-commutation relations.

In this formalism, the pairing force is given by

•^pair — ~ G ( v + ( v — co—( co + ‘
V, V)

The lowest eigenvalue of the total Hamiltonian H = Häp -t- Hpair can be 
approximated by means of a variational procedure. One uses a trial function*®)

I 0 > = Tl [Uv + U„cJ + cJ_] I vacuum >. (3)
V

The condition U2 + = 1 ensures that the wave function (3) is normalized.
From (3) it is seen that T2 is the probability that the states v+ and v- are 
occupied. The Ur are variational parameters to be determined by the con­
dition that they minimize < (I | H | 0 ). This leads to the equation

2/G =y(er2-rzl2)-1/2
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where zl — U 5 Up . 'Die
V

where

(5)

In consequence, the energy of the first excited state is always greater than 2d. 
An elegant formulation, equivalent to the above procedure, has been 

developed by Bogolubov*12) and by Valatix(13). Ithasbeen applied to nuclei 
hv Belyaev*7). We now summarize some of his results. One starts by in­
troducing two new operators (aj, $) defined by the following canonical 
transformation . . .

„T _ iq A _ y ,■ I
L pli»+ ’ | .

ßv = v^v — J

Because this is a canonical transformation, the new operators obey the 
same anti-commutation relations as the old. Thus, they can be regarded 
as creation operators for “quasi-particles” obeying Fermi statistics.

By means of the transformation inverse to (6), we can express H in 
terms of aj, ß$, ßv, and ar. Using the anti-commutation relations, H can 
be put into normal form, i. e., with the aj, ß^ to the left of the ßv, xv. H has 
then the following structure:

H= U + Hri + H20 + Hint. (7)

The term U is a constant. Hn contains terms proportional to (aJaF + ß*  ßv), 
H20 terms proportional to (oßvßl + ßvxv). Hint, the remainder, is supposed 
to have a small influence on the properties of at least the lowest states. 
The requirement that the coefficient of (a^ßl + ßvav) vanishes leads to (4). 

If Hint is neglected, the remaining

L’ + #11 = 2 Vv - j2/G + X Ev(<4 “v + ßv ßv) (8)
V V

describes a system of non-interacting quasi-particles. The single quasi­
particle energies arc given by (5). The wave functions can be characterized 
by the number of quasi-particles present. In particular, the ground state 
has no quasi-particles. Expressed in terms of the original particle-creation 
operators, it is just the state (3), so that

a„|0> = £,|0> = 0. (9)

The excited states all have even numbers of quasi-particles. Those with 
two quasi-particles are denoted by

I vco > = aj ßl0 I 0 >. (10)
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Unfortunately, the solutions (.3) and (10) are not eigenstates of the operator 
representing the number of particles

v
(11 )

However, we can at least ensure that the average particle number in the 
ground slate has a prescribed value n, by using a Lagrange multiplier. 
That is, we replace H by H-Ånop. The Lagrange multiplier }. is to be de­
termined bv the condition

" = <<» I "op I 0) = 2 (12)
r

Since the forma! effect of the subtraction of Znop is the replacement of the 
ev by ev — à, we see that ). can be interpreted as an effective Fermi energv.

b) 77ie deformation-dependent terms of the Hamiltonian.
We have been using a representation in which the single-particle Hamil­

tonian is diagonal. However, the spherical part of this Hamiltonian is not 
necessarily diagonal. We denote its matrix elements by 'flic non-spherical 
part, associated with ellipsoidal deformations, is represented by the scalar 
product of the single-particle and the total nuclear quadrupole moments. 
This lifts the degeneracies characteristic of the central field, and has beim 
successfully used<14)<15) in the explanation of many properties of deformed

sum of the quadrupole tensors of the orbits determined by that field and 
the pairing force.

If we were to take \ H \ P ) as the total energy, the contribution of

nuclei. Thus, the total single-particle matrix element is

£vco ~ £v<i> — Q/u ~ £v^voj>
V

(13)

where x is a coupling constant ultimately determined by the 
force, and

quadrupole

('/,<)>■«> - ! 1/ (9) 1 <"> (Ida)

y? = d/? Z 'i1?*  ^41-* , ( øe) ... ,i,-t...

f ° k 9
(Uh)

P being the total nuclear wave function. Therefore, (13) 
the self-consistency condition that the quadrupole tensor

and (1 lb) imply 
of the field is the
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since it effectively counts each 

the potential energy surface for 
reasonable, if the frequencies associated with changes in the arc small 
compared to the single-particle frequencies (adiabatic hypothesis).

Since we prefer to treat only the degrees of freedom associated with 
particles outside closed shells, we should like to replace (13) by an ex­
pression involving the quadrupole tensor, Q^, of these particles alone. The 
ratio has been studiedin several single-particle models for
the equilibrium values of Q^. We make the additional assumption that this 
ratio is independent of Consequently, ()^ in (13) can be replaced bv 
Q/t, and x renormalized.

It is useful to perform a principal axis transformation so that the live 
degrees of freedom (14 b) are replaced by three Eulerian angles specifying 
the orientation of an intrinsic system of axes, and two parameters describing 
the shape of the ellipsoid. In this intrinsic system = Q_x = I) and Q2 = ()_2- 
Following* 16), we use the shape parameters ß and y defined by*

the quadrupole force would be - (Q„)2. This is a factor of 2 too large,

particle pair twice. Thus, the expectation 

regarded as a function of the ()J, gives 

quadrupole deformations. This picture is

Qo = Q = ßcos y

Q2 = Q-2 = *$/|  2 = /?siny/| 2.
(15)

This definition of ß differs from that given in(16) by a factor of dimension 
(length)2. Consequently, the single-particle matrix elements can be written 
in the form

= ^veo-^ß [cos y (<7o)rft> + sin y = svôv(o, (16)
where

‘S’co — 1 /K~ [(92X0, 4" (O'— 2) rm • ( 1 ~ )

The self-consistencv conditions can now be written

Q = 2? O/o)w 2 vr
V

V

(IS)

These can be taken into account by means of two additional Lagrange 
multipliers ß and ô. One must thus replace the ev in (1) by

* In the following, all the directed quantities refer to the intrinsic axes, unless otherwise 
specified.
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^VOJ ~ ~ ~ ll ~ ’''VO) ~ £V^VM f )
where

// = X () + /Z G X S + G . (19)

In order to clarify the role of these Lagrange multipliers it is convenient 
to return to the original description of the quasi-particle approximation in 
terms of a variational procedure. The expectation value of <0|H|0> has 
to be minimized with respect to the Vv. The result is a set of which de­
pend on A, //, and g, which are in turn determined from (12) and (18). 
Then, if we allow small variations from this set of Vv, but keep A, p, and g 
fixed, we have

0 = ô < (1 I H I 0 > = ô < 0 I /7spher I 0 >• - // ô Q - aôS.
Thus,

<K0|Hspher|0> 0<0|/7spher|0>
ÔQ '

The energy for the optimum Vv, which we take to define the potential energy 
surface, is „ „

E = < 0 | //spher | 0 > + An - 1 /2 xQ2 - 1 /2 xS2 (22)

(cf. p. 7), and so

ÔE .= CT - x8 = <7.
Od

(23)

At equilibrium, the Lagrange multipliers /'/ and ô therefore vanish, and the 
Hamiltonian used to generate the wave functions has the same deformation 
as the one used to calculate the energy.

c) Calculation of the potential energy surface and mass parameters.
We seek an expansion of the potential energy as a power series in () 

and S. According to (23), it is sufficient to calculate the partial derivatives
ômp ômG

à{)nr~nÔSn and ^-"ÖSn' If we wish Io calculate the restoring force

we require second derivatives, and in most cases these are conveniently 
obtained as follows*.  Lor simplicity, we treat only one independent variable 
which we call R. We write

7/spiier-O7?<

^spher (fv +
V

+ c],._ cv_) + Hpair ■

(24)

This method was suggested by A. Bohr (private communication).
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We assume that the problem defined by (25) has been solved within the 
quasi-particle approximation. Thus we have values of zl, and the Vr. 
/?op can then be written

(26)

Treating — o/?op as a perturbation, the new ground state |0'> is given in 
first-order perturbation theory by

|MZ\ 1A\ , + Uœ\v) . . /o-\
Io >=|0>+g2---------—---------- 1VM>- (2/)

VOJ “1“

Here again the value of o is determined from the assigned expectation value
of /?op, i. e„

r, co
/? = <()' I 7ïop I 0'

( Up ^a>_r to v ) 

Er + E0)
(28)

According to (23) and (28), the restoring force
ô2E . ,
—2 is given byC =

A simple physical interpretation can be given for the terms in (29). 
fhe first one, which lends to preserve the spherical shape, equals the in­
crease in the expectation value of Hspher due to the deformation. To second 
order in /?,

<°' I ^spher I 0'>-<0 I /7Spher |0>
JEj rva>
v, co

Ä2

(^jVco T ^co V) 

EV + EO)

(30)

Fhe second term corresponds to the expectation value of the interaction 
which produces the deformation.

However, some precautions must be taken when using | O' > given by 
(27), since its average particle number differs from that of |0). In fact, to 
first order,
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<°' I "op I 0'>-<0 I nop I 0> = eZl22>3. (31 )
r

The linear term in (31) can produce a spurious contribution in (30). In 
order to eliminate this linear term and thus this spurious effect, we must 

require — = 0. second order variation in the number of particles does 
v Ev

not affect (30), since the expectation value of Wspher is stationary in the 
number of particles).

In the Appendix, it is shown that the additional condition

must also be satisfied, due to the requirement that matrix elements of the 
form < 0' I Hint | ( vaj)' ) should contain no terms linear in o.

The conditions X" -g = 0 and 21

vibrations about spherical equilibrium shape. The methods of this section 
can also be used to study the vibrations about non-zero equilibrium de­

formations. In this case, the conditions 5 —^ = 0 and vr„v = 0 aie satis-■— r/3 --- j,3

fied for y-vibrations about y = () or y = %. However, for ß-vibrations they 
are not satisfied, because the quadrupole operator connects the ground state 
to the spurious 2-quasi-particle state. Hence, one may not fix Z and zl and 
then do the perturbation calculation; one must rather determine first the 
effect of the perturbation on the single-particle energies and wave functions, 
and then solve (4) and (12) for 2 and d. Although we will not need the 
general expressions so obtained, we give them in the Appendix for com­
pleteness.

We calculate the mass parameter, using time-dependent adiabatic 
pertubation theoiv (the “cranking” model). (See also eq. (15) of rcf.<7)).

^g1* = 0 are satisfied for quadrupole

(32)

Using the relation à 11
ôo

(32) can be shown to be equivalent to(19)
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terms in o (cf. eq. (10A)). The formulae for the restoring force and mass 
parameters of the vibrations simplify if the single-particle quadrupole 
moment has only diagonal elements (e. g., the harmonic oscillator)

'A"
V

1
(34 a)

(34h)

Another simple case arises when the single-particle states are degenerate

(35 a)

(35 b)

(35 c)

Mere, 0n = 1 and xn = while Q is the total number of pairs of states 
available.

The above adiabatic treatment of the quadrupole vibrations requires the 
energy of the first vibrational excitation ha> to be small compared to twice 
the quasi-particle energy. A different approach to this problem has been 
given by B. Mottelson(10). He considers particles moving in degenerate 
states, and coupled by pairing and quadrupole forces. The quadrupole force 
all’ects only one of the I = 2 two quasi-particle states, whose energy is given
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by this model to be exactly the same as (35 c). Here the c< of validity
are complementary to ours, since they effectively imply*  a small depression 

* More precisely, the seniorities of the states mixed by the quadrupole force into the ground 
state should be small compared to Q.

** A more general type of shell has been considered by J. M. Araùjo (private communication).

of the vibrational state compared to the 2-quasi-particle energy. Since (35c) 
holds at both limits, we may expect it to be a reasonable approximation 
in between.

III. Expansion of the energy about the spherical equilibrium shape

6na

Belyaev*7) has already studied the dependence of the nuclear surface 
energy on an axially symmetric deformation, using a single-particle Hamil­
tonian with diagonal intrinsic quadrupole moments (q0)vu> = (<7o)w an^ 
an assumed density of states. In the following, the simplified case of nucleons 
moving in a harmonic oscillator shell will be treated**,  but the restriction 
to axial symmetry will be omitted.

In order to calculate the partial derivatives and ÔQn-môsm’

we can proceed as follows: Â and J are expanded as power series in the 
variables // and a. It is then possible to construct the power series for Ev 
and Vp and, therefore, the right-hand side of the basic equations (4) and 
(12). We must put equal to zero the coefficients of the successive powers 
of /t and a in the expressions for G and n, since these quantities are inde­
pendent of the deformation. This provides us with a set of equations from 
which the coefficients in the expansions for z and Zl can be derived. These 
coefficients are inserted in the power series for V„. The power series for Q 
and S can then be immediately obtained by using equation (18). After 
reversing these last two series and performing the necessary differentations, 
we obtain the following expression for the energy:

3635 Q 77955
448 n 1792

4/?
5(1 + a) Qmax

(36)
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(36 a)

ß and y are defined in (15), M is the mass of the nucleon, and IV the frequency 
of the oscillator field. N, which is assumed to be large compared to unity, 
is the principal quantum number of the oscillator shell. We also define nz 
and n. to be the numbers of oscillator quanta along and perpendicular to 
the z-axis, respectively.

()max 1S the maximum value of Q which can be obtained with a given 
number of particles in the shell. One gets this value in the “aligned coupling 
scheme”(2).

a is defined so that a.V is the maximum occupied value of n±, for prolate 
deformation, with a given number of particles nL and no pairing force. 
In consequence, 0<a<l/|/2. For values of n > Q (a>l/|/2), Qmax occurs 
for oblate deformation. In this case the previous expression also holds, holes 
playing the role of our previous particles.

A few comments can be made on equation (36).
1) The /-dependence of the terms of a given order in ß can be under­

stood on the basis of general invariance arguments. The energy of the system 
must be invariant with respect to rotations. Therefore, it can be expressed 
as a linear superposition of the solutions of the five-dimensional quadrupole 
oscillator corresponding to zero total angular momentum. The /-dependent 
part of these solutions can be expressed in terms of Legendre polynomials 
in the variable cos 3/(16). The solutions for / = 0 can be characterized!21) 
by the quantum numbers (n^, Z), where riß is the number of quanta for the 
^-motion and I is an integer that Rakavy<22) has called the “seniority”. It 
is related to $1, the total number of phonons, by the equation = 2nß + 3l.

The /-independence of the term proportional to ß2 simply reflects the 
fact that no function of cos 3/ can be formed from linear combinations ot 
quadratic expressions in cosy and siny. The only invariant expression that 
can be made proportional to ß2 is the /hexcitation built on the ground state. 
This wave function is characterized by the quantum numbers (1,0). For 
3 phonons only one solution is possible, and is proportional to ß3 cos 3/ (0,1). 
The only allowed 1=0 state with 4 phonons is the second ^-excitation of 
the ground state (2,0), which does not depend on /. Also in the case of 
5 phonons only the solution (1,1) appears. It corresponds to the ^-excitation 
of the (0,1) state and, therefore, has the same /-dependence, namely cos 3/. 
Two = 6 states appear for I = 0. The triple /^-excitation of the ground 
state with no /-dependence (3,0) and the (0,2) state which is proportional 
to ß6 cos2 3/.
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In general, one can predict that terms which contain odd powers of 
cos 3 y are multiplied by odd powers of ß; even powers of cos 3 y are mul­
tiplied by even powers of ß.

2) The existence of a negative ß3 term*  ensures that, for sufficiently 
small positive values of C, there is a maximum in the expression for the 
energy as a function of the axially symmetric deformation. It is situated at

* A discussion of the ß3 terms, including their effect in the kinetic energy, has been made 
independently by A. Kerman (to be published).

max 3 x max c. (37)

The smallness of C (and therefore of ßm&x) allows us to consider only the 
ß2 and ß3 terms in (36)- One can then easily derive (37).

The existence of a maximum ensures the existence of a second minimum, 
provided the system does not collapse. Thus, the system has started to 
deform even before reaching the transition point C = 0.

It is interesting to note why there do not occur two minima in the curve 
which Belyaev used to illustrate the energy of the system as a function 
of the axially-symmetric deformation. Let us consider a degenerate shell 
whose levels are split by a deformation in such a way that the final single­
particle spectrum is symmetric with respect to the original energy. This 
system will have no preference for prolate rather than oblate deformations, 
or vice versa. Thus, no odd powers of ß will appear in an expansion of 
the energy such as (36), because these terms are associated with odd powers 
of cos 3y, which can distinguish between y = 0 and y = n. In particular, 
no ß3 term can occur and therefore the sufficient condition for the existence 
of two minima no longer holds. Belyaev has found the ground-state equi­
librium deformation for a system of this kind (constant density of levels). 
One should remember, however, that this system has some kind of y-un- 
stability, because prolate and oblate deformations are equally favoured. 
Neither does the energy surface for the y-deformation of an rq-subshell in 
an axially symmetric harmonic oscillator field present two minima.

The density of states of an axially symmetric harmonic oscillator is 
proportional to the energy; the density in a deformed /-shell is inversely 
proportional to the magnitude of the magnetic quantum number. In both 
cases, the equilibrium deformation is such that the density increases with 
energy. If the shell is less than half filled, this favours prolate deformation
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Fig. 1. Level spectra for (a) a harmonic oscillator field of cylindrical symmetry, (b) an axially 
symmetric field superposed on the spherical field giving rise to a single /-shell.

for tlie harmonic oscillator and -shell (see Fig. 1).
Past the middle of the shell the above arguments apply to the hole states, 
and thus the roles of prolate and oblate deformations are interchanged.

The most direct consequence of the existence of two minima would be 
the appearence of a sudden change in the deformation when the second 
minimum falls below the first. We have seen that the existence of two minima 
requires a ß3 term, which in turn implies /-stability. This is consistent 
with the empirical fact that the transition to deformed nuclei is more abrupt 
at the beginning of the rare-earth region where the nuclei are /-stable, 
than at the end where they approach /-unstability. More accurate predictions 
cannot be given at present, because neither the harmonic oscillator nor the 
j-shell provides a realistic description of the actual single-particle spectra.

3) In the spherically symmetric harmonic oscillator, the consequences 
of the terms proportional to cos 3/ and cos2 3/ have been studied by con­
structing their matrices and diagonalizing them in perturbation theory. The 
necessary /-dependent part of the wave functions is given in reference^20). 
The term cos 3/ shifts the first 2+ and 4+ states towards the positions that 
they would occupy in a rotational band. The second 2+ state is pushed 
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rather high. On the contrary, the cos2 3/ term tends to bring the second 2 + 
state below the first 4+ state.

The discussion of the influence of these terms on the transition rates is 
simplified by the existence of a “/-parity”*20) which is equal to the parity 
of I. Any interaction which can fie expanded in even powers of cos 3/ 
preserves a selection rule which forbids the transition from the second 2 + 
state to the ground state; the odd powers of cos 3/ violate this selection rule.

Most non-deformed, even mass nuclei* 23) have their second 2+ level 
below their first 4+ level; in addition, the transition from the second 2 + 
level to the ground state is strongly retarded. The previous arguments suggest 
that both these features can fie attributed to the effect of a term proportional 
to /S6 cos2 3/. One can imagine situations in which the coefficient of the ß3 
term would lie reduced, for example if the single-particle spectrum is inter­
mediate between those of the harmonic oscillator and the j-shell, or if protons 
and neutrons are filling opposite ends of similar shells (see 2). The main 
effect of a ß4 term would fie on the position of (he second 0+ state, about 
which very little is known experimentally.

We have considered only the ß- and /-dependence of the nuclear sur­
face energy. Similar terms in the mass parameter should also lie taken into 
account in a more detailed study of nuclear vibrations.

IV. Gamma vibrations in a deformed harmonic oscillator field

We assume that the system has a prolate axially symmetric equilibrium 
deformation (/ = 0), and we study the change in the potential energy for 
small changes in /. In this chapter we consider the case of a harmonic 
oscillator field. Because of the very particular degeneracies associated with 
this field, we do not expect quantitative agreement with actual nuclei. How­
ever, the oscillator gives a first qualitative picture of a realistic nuclear shell, 
and has the advantage that closed expressions for the vibrational parameters 
can be obtained. In addition, we assume that A7( = nz + nL) is much greater 
than unity.

The operator corresponding to the /-deformation has only diagonal 
matrix elements in a single-particle representation characterized by the 
quantum numbers AT, n± and ny.
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Here, W, is the characteristic frequency for oscillations perpendicular to 
the r-axis.

We can therefore apply equations (34). One can easily evaluate the 
vibrational coefficients in two simple cases.

a) The deformation is so great compared to the pairing force that the 
problem reduces to coupled particles in the n±-subshells. The necessary 
condition for the validity of this approximation is that the two quasi-particle 
energies are small compared to the distance between 2 subshells, i. e.,

G±7q«3xQeq--^z, (39)

where G. is the effective strength of the pairing force which acts between par­
ticles belonging to the /q-subshell.

Due to renormalization effects of the other 7?±-subshells, G± is greater 
than the G to be used if the entire jV-shell is treated. We can calculate the 
renormalization by means of a procedure similar to those employed in<7> 
and <10> to account for the influence on a particular unfilled shell of the 
presence of other shells. Let us call Gva> (= G) the pairing force matrix 
element corresponding to a scattering of a pair of particles from the states 
(v + , V-) to the states (co + , co-). According to(10),

(40)

By performing the above summations, and using condition (39), we get

G± — G
1

(41)

In this case, a) the simple expressions (35), corresponding to the “de­
generate model”, can be used for the vibrational parameters

h2 i /mwA2
2 G±nX\ h )

(42)

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 2. 2
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where O'n = —\2---- , and n' is the number of partieles in the sub-nx \ n± /
shell. If 6^ is the value of 0n for which the axial shape is no longer stable,
(42) and (3G) imply that

2 G n[\w) (43)

Neglecting the renormalization effect expressed by (41), we see that 6°n> 
and 0° are roughly of the same order of magnitude. This implies that the 
fraction of nuclei with axially symmetric equilibrium deformation is of the 
same order of magnitude as the fraction of nuclei which are spherical.

Nuclei with have an axially symmetric stable deformation.
The ratio between the frequency of the y-vibrations and the gap is

(44)

Here the adiabatic condition

For nuclei in the region

implies that

of transition between axially symmetric and
y-deformed nuclei, the potential energy surface does not exhibit two minima 
(cf. p. 14).

b) We can also easily treat the deformed harmonic oscillator field if we 
replace summations over the variable n± by integrations, using a level 
density proportional to the single-particle energies (see p. 15). This is a 
particular case of the level density used by Belyaev in his investigation 
of axial deformations. Equations (46)-(54) are a transcription of some of 
his results into our notation.

The single-particle energies ev can be labelled by n±. With a convenient 
choice of the zero-point energy, they are given by

(45)

W is the frequency of the harmonic oscillator. In neglecting the difference 
between W. and W2 we make an error of the order of the deformation, i.e., 
of order A-1/3 or W1 for the equilibrium deformation. This can be neglected 
in our limit TV » 1.

A new parameter r] characterizing the deformation is introduced:
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3 h jj,
r‘ = MWGq’

where 5 is defined by the condition

C V Q Oh) dnx - r//?i

• 0 ^»x t. 0 ^n±

(46)

(47)

In the axially symmetric harmonic oscillator, the level density, p(n.), equals 
n±. Therefore, the parameters used by Belyaev in order to characterize 
the level density are here

e» - f f - i • (is)

The parameters z and

(49)

(50)

(51)2 1/2

with

(52)

can eliminate q

(53)

The

(54)

24

One 
and ?/

where x, 
varying

•n measures the 
function of r/

.T

m h GN r . , „.,
MW = “Ö" ~ Xn COth d ~ ’

quadrupole moment Q is given by

W1

ft 2 J ,
- MWl ~Xn) COth d~X'

n (1 sinh2?/)

in (46) by its expression as a function of o0, £, xn

A are always determined from (4) and (12): 

3h/ziV
; = ~2MW^~Xn coth^)’

ja = f3Ä/dV\2 (1 -x2n), 
\2MWj sinh2?/

number of particles in the shell and is also a slow-

2*
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Fig. 2. The right-hand side of equation (55) represented as a function of rj = r) , for several 

values of The intersection of these curves with the horizontal dashed line yields the values
““ y.N2 / ll \2

of rj for which the energy is a minimum if the - I — — I is such that 0°n — 0.55.

Equations (53) and (54), plus the condition of the vanishing of the 
Lagrange multiplier at equilibrium (it = '/.(J), define an implicit equation 
for the equilibrium value of ?/.

nN2! ft \2 4 sinh2 ?/ [rt - xn (tj coth - 1)]
G LMW/ 3 (1 - x2) [sinh2 r/ - 2.r„ (3 + sinh2?/) + 2i; (3.rncoth?/-l)]
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, there are two

(56)(

2 8

(57)

Fi

(58)

s2övv _

V

ny = 0 

£ 

Ea„.

Ea»±

<2v7 ^yv
— j?3v

S27
— J7aV L-y

11 kn2
small G

0.1, 0.3, 0.5, 0.7, and 1. It is

(aOv) ■ therc are 
tremum is the minimum at

h2 \2 .—— , there is only one solution to (55), and thus only one mim- 

At î? = 0 the right-hand side becomes indeterminate. However, (36) shows 
that in this case there is always an extremum in the potential energy surface. 

The right-hand side of (55) is plotted as a function of in Fig. 2 for = 

seen that, for a particular and sufficiently 

no solutions to (55) and thus the only ex-
/x A72»7 = 0. For larger (r

values of /] satisfying (55), the lower corresponding to a maximum and the 
upper to a second minimum (cf. discussions on p. 14). For still larger 
xA72

G
mum (the extremum at = 0 is now a maximum). One can also see that 

for each 75 #1 there is a minimum value for stable deformation.
" 4 s2vv

The expressions —3 and —5, needed in (34) for the evaluation
v Ev v Ev

of the restoring force and mass parameter, are to be calculated for the value 
of which corresponds to the equilibrium situation. We find
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(501)

(511)

(551)

8
(571)

A2 G3

(581)

According to (34), by

(59)

whichaxial

Thus stablehas

(60)

Lhe
9

sinh4 r/

the y-vibrations diverges as However,

n

hlVy
For non-zero G, we must solve (55) for n and then evaluate ---- -, using\ 7 / 9/1

2 ~
I has been chosen so

1 - xn

symmetry is preserved until xn = —1/2,

the first half of the shell

s2\ '^VV
—V ljV

1 + xn

3xN2
2

s xN2
(50), (51), (57), and (58). The constant - G
that 6” = 0.55, corresponding to a situation in which the spherical shape 

becomes unstable when the = Hie results are shown in Fig. 3. The 

corresponding curve for oblate deformation is obtained by reflecting the 

curve for prolate deformation about the line = 1.

which implies that 

corresponds to 7^=—.
12 8

prolate deformation.
The mass parameter for 

the significant quantity is the ratio between the energy of the y-vibration 
and 2 J. This ratio remains finite, and is given by

1Î IVy _

256
3N6G5

1- —O
[9 nW

In the limit of vanishing G, and equations (50), (51), (55), (57), and 
(58) reduce to V4/;2 „2
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It is seen that the adiabatic condition for y-vibrations is satisfied for 

0.5 <^<1.5. For prolate (oblate) deformation the frequency of the vi­

bration decreases as the number of particles (holes) increases. Fig. 3 also

Fig. 3. The ratio between the energy of the y-vibrations and twice the value of s plotted as a 
function of for 0® = 0 (G = 0) and d°n = 0.55. The full and dashed lines represent the 

two cases in which the calculations were done by replacing the summations by integrations. 
The dotted line represents the result of the calculations done without this approximation, for 

0° = 0.55 and n such that m = 4 is at the Fermi surface for G = 0.n -L

e J L H ' aj * * *

shows that the ratio is not significantly affected by the presence of the 
pairing force.

If G-+ 0, so that ^->oo, we might expect to approach the situation dealt 
with in a) above. Nevertheless, the fact that Fig. 3 shows no subshell effects 
implies that the two methods do not lead to the same result. In fact, for 
fixed N, the validity of method a) places an upper limit on G (see (39)), 
whereas the validity of method b) places a lower limit on G. Evidently 
these regions of validity do not overlap. It is probable that the actual nuclear 
case is better represented by method b). On the one hand, the reduction 
in the observed moments of inertia compared to the rigid values implies 
a mixing by the pairing force of different n.-subshells. On the other hand, 
performing the sums in (4), (12), (54), (56), and (57) exactly for 0® = 0.55,
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N = 7, and n such that n± = 4 is at the Fermi surface for G = 0, leads to 
the dotted curve in Fig. 3. Although subshell effects do appear, the average 
ratio agrees well with the result given by method b).

V. Gamma vibrations in a realistic shell model

In the previous section we found that the occurrence of low-energy 
y-vibrations requires states with high values of rq. However, the oscillator 
model has very special features, in particular the degeneracy of the rq- 
subshell. Before attempting a detailed comparison with experiment we must 
give up these special features and make the single-particle Hamiltonian 
more realistic.

The Nilsson model(24> has been very succesful in explaining the properties 
of odd-particle states in deformed nuclei <15). The nucleons are supposed to 
be in states very similar to those of a deformed harmonic oscillator. The 
states are labelled by (iV, nz, A, A+Z). N and nz have the same meaning 
as before, and A and 2' are the components, along the symmetry axis, of 
the orbital and spin angular momenta, respectively. However, this model 
dillers essentially from the harmonic oscillator in that states with the same 
nz are no longer degenerate.

We must now consider nuclei with both neutrons and protons outside 
closed shells. Apart from some very exceptional cases, there are no nuclei 
in the deformed region in which an external neutron and proton are oc­
cupying time-reversed states. Thus, the pairing force we have been using (2) 
will not couple the neutrons and protons. They will, however, be coupled 
by the deformed field. The matrix for the single-particle neutron Hamiltonian 
is, in the Nilsson representation,

(£n)ra> ~ ^vco ~ + ^np $p) (,sn)va> • (®1)

A corresponding expression holds for protons. The coupling constants 
xnp and xpn are to be determined, in principle, by the isotopic spin 

dependence of the nuclear force plus renormalization effects. It will be 
assumed in the following that xn = xp and xnp = xpn. The are the single­
particle energies calculated by Nilsson*.  They already contain the terms 
depending on the axially symmetric part of the deformation. The subscripts 
n and p indicate neutrons and protons, respectively.

* Relatively small shifts will be made in the energy of some of Nilsson’s levels in order 
to get closer agreement with empirical level ordering in odd-mass nuclei (cf. p. 30).
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One has then to solve the equations (4) and (12) for neutrons and protons
separately4:. The neutron-proton coupling is expressed by the terms
-«2,nSn(Sp)op and -*npSp(Sn)OÎ>. In the absence of these terms, we can cal-
culate the 'vibrational parameters for separate neutron and proton y-vibra-
tions**. The problem is then equivalent to that of two coupled harmonic
oscillators

,, A2 &P <2 ,^n e2 ,^P o2 v o <•
By 2 + 2 'P + 2 2 ^np^p^if (G-)

The last term contains the usual factor of 1/2.
We can now decouple the oscillators by transforming to normal co­

ordinates. The lower eigenfrequency is given by

(63)

We can also calculate the probability of the electric quadrupole transition 
connecting the first y-vibrational state with the ground state. For this pur­
pose, it is convenient to regard the y-vibration as a superposition of two 
travelling waves <22>, Q2 and 0-2> Wlth definite angular momentum pro­
jections along the symmetry axis, and with the same vibrational parameters. 
The operator sJJi(E2,/z) responsible for the E2 transitions* 14) is related to 
Q/z by 1 A

(«o

where en'p is the effective electrical charges carried by the neutron or the 
proton, respectively. Using eq. (V.34) of ref.<14> the square of the transition 
matrix element for a single oscillator is found to be

|<2|äH(E2,2)|0>|2-1^i^. (65)

For the coupled harmonic oscillators it is

|<2|2R(E2

where

(66)

- *np  \ ^p 

(BnCp-BpCn)
(67)

* Some of the wave functions were kindly supplied by S. G. Nilsson; others were derived 
in collaboration with Z. Szymanski.

** As the operator ,r2-y2 is not diagonal in the Nilsson representation, we have to use (29) 
and (33).

Mat. Kj’s.Medd.Dan.Vid.Selsk. 33, no. 2. 3
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The reduced transition probability from the ground state to the first 
y-vibrational level may be written (cf. eq. V.33 and note 175 of ref. 14)

B(E2", 0^2) = 2 I <2 (E2, 2) | 0 > |2. (68)

We must now discuss the choice of the parameters Gn, Gp, xn, xn 
en and ep*.

In the deformed region, there is no clear distinction between filled 
and unfilled shells. Therefore, one has no definite prescription for the states 
into which the pairing force is allowed to scatter. However, states which 
lie far from the Fermi level contribute to the wave function only through 
a renormalization of G<?) (io). Therefore, we have chosen to allow the pairing 
force to scatter only amongst the 24 states nearest to the Fermi level.

One has to choose an effective value of Gn and Gp such that 2An and 2 A 
reproduce the average differences between the neutron and proton binding 
energies of even and odd-mass nuclei. Furthermore, the predicted quasi­
particle excitations should be tested with experimental data. However, one 
should expect some shiftings due to quasi-particle interactions, to the block­
ing of some states near the Fermi surface, etc. Therefore, the empirical 
quasi-particle energies give only a lower limit on the value of G.

Finally we have chosen a value of Gn 26.5
A Mev and of Gp

The values of xn and xnp enter into the calculation of the ground state 
quadrupole moment. The method used here is analogous to that used in 
the derivation of (55).

The part of Nilsson’s potential responsible for the deformation is

ÔMW2 2 2o (2 z2 - .r2 (69)

Comparing (69) with the 
tonian (131), we get

corresponding term in our single-particle

ÔMW2
3 it = xQ + i>.

1 lamil-

(70)

Using the Nilsson single-particle energies corresponding to a given value of 
ô, we solve (4) and (12) and thus obtain the electric Qe and mass () qua­
drupole moments as a function of b. The inverse of the first function enables 
us to determine <5eq from the observed equilibrium electric quadrupole

The determination of these constants is only outlined here. It is given with more details in(25). 
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moment. At equilibrium, // vanishes and thus the value of x which would 
yield these values of deq and Q(deq) is given by

VW2 ôeq
3 Q(^eq)' (71)

moments are

(72)

uni tv for the

(73)

'2where

J/W\2 
h '

d
3

In the rare-earth region, the observed electric quadrupole 
reproduced by

been chosen to be 
those above. The single-particle

In the calculation of Qe and Q, 
states below the selected 24, and zero 
mass quadrupole moment is given by'

A"2
_2

2U2 x'2

.wh; 2 ,2 j/h; 2

Use has been made of the relations<24)
/i ~

(74)

It has been verified that the contribution to the total quadrupole moment 
from the terms multiplied by ô in (73) is equal to the contribution due to 
the first term. In other words, the same results could be obtained by using 
a renormalized value of x equal to twice(9) the value given in (72), and 
using for the single-particle quadrupole matrix elements the value given by 
the first term in (73). The coupling parameter x, calculated in this way, 
is to be considered here as an average value of xTO and xmj).

We are going to calculate the energy and transition probability for the 
y-vibrations in three cases, namely xM = xwp = .r; 6 xw = 2 x„p = 3x and

* The A-7/3 dependence of x has been pointed out by Belyaev^).
** The single-particle matrix elements have been obtained using the expression of the wave 

functions in terms of the asymptotic representation'26)-
3*  
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xn = Knp = The value of .v to be used is equal to twice that given in 
(72). The single-particle matrix element will be

.VH’J (75)

Determination of en and ep. It was found above that renormalization ef­
fects doubled the mass quadrupole moment. We have used for the additional 
charge due to these effects a value of Z/A times the additional mass. Ac­
cordingly, ep = e(l + Z/A) en = eZ/A, (76)

where e is the charge of a free proton.

Desalts of the calculations. Table I a contains the value of the summations

calculated for­

sorne neutron numbers and for the deformation listed in column 1. Columns 4, 
5 and 6 contain the restoring force for the neutron vibration, assuming 
xn = xnp = x; 6 xn = 2xnp = 3x and xM = x„p =• 1.3 x, respectively. Column 
7 lists the mass parameter. Table lb is the analogous table corresponding 
to protons.

'fable II contains the predicted energy of the first y-vibrational level 
and the experimental value.

The two first calculations show that the value of the energy of the first 
vibrational level does not depend on the ratio xn/xnp- At the beginning of 
the deformed region the predicted energies are about 80 per cent greater 
than the empirical ones. There is, however, a correlation between the em­
pirical and theoretical trends (i. e., decrease in the energy for Er166). This 
decrease is due mainly to the relative large values of n for the states which 
come near to the Fermi energy.

At the end of the deformed region, the predicted trends and order of 
magnitude of the energy are in good agreement with the experimental values. 
However, a detailed comparison is hindered in the region of W and Os 
by the uncertainty in the parameters used. The predicted energies are 
rather sensitive to the position of the (5101/2) and (5123/2) neutron levels. 
In the calculations, these levels have been depressed by 250 kev in order 
to fit the spectrum of W183. Calculations with the original Nilsson energies 
would decrease the energy of the y-vibrations for 112 neutrons and increase 
it for 110 neutrons (keeping ô = 0.20) and would thus give a somewhat 
better fit. Furthermore, the experimental evidence on the value of 5 is not
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are

xMev-1
2

I xMev-3. The units of C,C' and C"

( 5 -1)
\MW)

are the inverseThose of Xa

of those of Column C refers to the case xw = z„p = x; column C to the
3 xcase 3xn = xnp = — , and column C" to the case xn = xwp = x 1.3. The units 

2 of B arc (MW)2x Mev“1.

Tables 1 a and 1 b. The rare-earth region. The units of Vx are 
(—Ï
\.VW7

Table I a.

.V <5 •^1 y C'n Cn Bn

90............ 1 0.25 39.8 3.38 0.0070 0.0098 0.0053 0.00107
0.30 38.1 3.47 75 103 58 119

92........... 0.30 34.3 3.03 92 119 76 129
94........... 0.30 34.5 3.94 93 119 77 165
98........... 0.30 38.6 5.29 81 105 66 177

100........... 0.30 37.2 4.32 88 111 74 156
106........... 0.25 54.5 9.22 48 70 36 156
108........... 0.20 60.6 10.81 41 62 28 147
110........... 0.20 67.7 14.0 33 53 21 153

1 0.15 75.7 15.8 26 46 15 138
112 1 0.20 68.2 14.2 34 53 22 152
114........... 0.15 74.1 14.4 28 48 17 131

Table I b.

Z Ô — i
^3 CP CP CP BP

1,2............. 1
0.25 24.8 2.01 0.0145 0.0173 0.0128 0.00163
0.30 22.2 1.74 169 197 151 176

64........... 0.30 24.9 2.85 147 173 131 230
66........... 0.30 31.1 5.74 109 135 94 297
68........... 0.30 30.8 5.65 114 138 99 298
70........... 0.30 21.0 1.95 191 215 177 221
72........... 0.25 26.2 1.98 147 169 133 144

'4.............1
0.15 40.0 5.14 84 105 72 161
0.20 34.3 3.82 105 126 93 162

-........... ! 0.15 44.2 6.95 74 93 62 178
0.20 43.2 6.65 76 95 64 176
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Table II. The rare-earth region. Columns 2, 3 and 4 are in Mev. They cor­

respond to the case xn = xnp = z; 3 y.np = and xn = xnp = z 1.3, respect­

ively. Column 6 lists the experimental energy.

Nucleus <5 (fiWy)th (Z1^)th (/!«y)eXp.27)2,)

Sm152 J 0.25 1.79 1.84 0.77 j 1.092
0.30 1.91 1.97 1.18

Sm1“............................. 0.30 2.11 2.14 1.50
..Gd1?8............................. 0.30 1.9(1 1.91 1.30 1.152

Gd1®?............................. 0.30 1.81
1.45

1.82 1.26 1.182
1 ) 0.30 1.46 0.89 0.964
Dy1??............................. 0.30 1.38 1.38 0.78J 98
Fr166 0.30 1.43 1.43 0.88 (1.787

0.30 1.52 1.52 1.03 0.822
Vh170 0.30 2.05 2.10

.„Hf}7®............................. 0.25 1.44 1.56 0.71
W182 0.20 1.16 1.24 1.222
w}??........................ 0.20 0.92 1.09 0.903
w186 / 0.15 0.65 0.76 0.730

0.20 1.02 1.10 — 1
o«186 0.20 0.75 0.81 0.768

Os“’...............................1 0.15 0.53 0.64 — I 0.628
0.20 0.80 0.85

Os}?"............................. 0.15 0.66 0.73 0.558

so precise for the W and Os isotopes as in oilier rare-earth nuclei. Table II 
indicates good agreement for W184, using ô = 0.20, and for W186 using a 
value of 5 intermediate between 0.15 and 0.20.

In addition, the restoring force becomes very small, so higher order 
terms in S could become more important.

We have also performed the calculations using a coupling constant z 
which is 30 per cent greater than the one determined by considerations on 
the axially symmetric equilibrium deformations. These calculations give 
good agreement for the /-energies at the beginning of the deformed region 
and they lead to /-instability in W and Os. If such would be the case, the 
/-vibrations in Hf should be especially low. However, this fact does not ap­
pear to be supported by experimental data.

One can estimate roughly the effect of the neglected Coulomb interaction 
by assuming an ellipsoid with constant density of charge^24*.  The Coulomb 
energy is



Nr. 2 31

3Z¥ r 5 (Q2_+S2)
5 R 36 A27?4 (77)

A1/3cm Thus the effect of the Coulomb interaction amounts only

to a 4 per cent change in x in the middle of the first deformed region.
Table III contains the reduced transition probabilities calculated by 

means of (68) and parameters determined above. In the Gd, Dy, Er, and 
W-isotopes, the predicted values of the reduced transition probabilities are 
in agreement with experiment. In Os188 and Os190, however, the predicted 
transition rates are about three times the experimental values. The disturbing 
aspect of the discrepancy is the fact that, experimentally, no increase in 
the transition rate occurs as the energy of the y-vibrations decreases. We 
expect such an increase since the decrease in the y-energy is principally 
due to a reduction in the restoring force, which should lead to oscillations
of greater amplitude. On the other hand, if the restoring force goes to zero 
(y-unstable oscillations* 21)) the transition from the second 2+ state to the 
ground state is completely forbidden. This reveals an incompleteness in 
the present treatment, due to the fact that our wave functions do not have 
the required symmetry properties* 16). This symmetrization would give rise 
to interference terms which are responsible for the cancellation of the above- 
mentioned matrix element as the system approaches y-instability. But these 
interference effects should be small if the root mean square value of y is 
small compared with tt/3. Estimated values for this quantity are also listed 
in Table III. They have been calculated by means of 

7r.m.
1/2 Qi 
k Qo

i/B(E2; 00-22)m 
I B(E2;OO->2O)W’ (78)

where B(E2)m is the usual reduced transition probability calculated, as­
suming the same charge for neutrons as for protons. However, the ratio 
(77) can be well approximated by the ratio between the reduced transition 
probabilities obtained with the effective charges (76).

It seems that for Os188 and for Os190 the above-mentioned interference 
effects could begin to be important. The inclusion of higher-order terms 
which may have “y-parity” would increase these interference effects.

The present estimates of yr m s may provide also a test about the validity 
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Fable III. Reduced transition probabilities, in units at 10“48e2cm4, for the 
transition from the ground state to the first y-vibrational level. The last 
column lists estimated root-mean-square y-values in units of tt/3 . The inter-

ference effects neglected here arc unimportant if yr m s

All measurements of ref. 28 carry an experimental uncertainty of a factor of 2.

Nucleus Ô B(E2; 0+y)th B(E2; 0>y)[h B(E2; 0->y)th
285 295

71(E2;0->y)Jp} Frms

Ç. 152
90

; 0.25 ....
' 0.30 ....

0.12
0.10

0.12
0.10

0.30
0.17

— 0.20
0.20

Sm1“ 0.30 .... 0.09 0.10 0.13 0.17
64Gd1B9l 0.30 .... 0.10 0.11 0.16 ~0.16 0.17

Gd168VJU 94 0.30 .... 0.11 0.11 0.14 ~0.16 0.16
Dv16066i7J 94 0.30 .... 0.13 0.13 0.24 — 0.18
Dv1641 y os 0.30 .... 0.12 0.12 0.22 0.16

681-1 98 0.30 .... 0.12 0.12 0.19 ~ 0.22 0.16
Kr168
1 A 100 0.30 .... 0.13 0.13 0.18 ~0.22 0.16
Yb17070 1 ul00 0.30 .... 0.07 0.08 0.09 — 0.13

nHf178721ll106 0.25 .... 0.10 0.10 0.21 — 0.17
W182

74 " 108 0.20 .... 0.16 0.18 — ~0.12 0.23
w184 
'v 110 0.20 .... 0.17 0.19 — 0.17 ± 0.05 0.26

W}?®
0.15 .... 0.37 0.34

0.17 ±0.03
0.40
0.28i 0.20 .... 0.1/ 0.18 —

Os18676k7^110 0.20 .... 0.19 0.22 — 0.33

Os!?®
J 0.15 .... 0.58 0.47 — — —
1 0.20 .... 0.19 0.23 — 0.20 ± 0.06 0.36

Os190''*114 0.15 .... 0.35 0.37 0.14 ±0.03 0.48

of the models which take into account only the degrees of freedom associated 
with an asymmetric rotor.

In order to summarize our results, we can say that, without any free 
parameter, we have been able to predict energies for the /-vibrations which 
are in good agreement with experimental data at the end of the deformed 
region. At the beginning, the predicted /-energies are too high, but the struc­
ture in the empirical curve is predicted theoretically. The experimental 
transition rates are also well accounted for, with the exception of the Os 
isotopes.

Some calculations have still to be performed in order to test the validity 
of some of our assumptions. For instance, we have to treat the closed shells 
explicitly in order to check the renormalization idea. In addition, the use 
of a central potential which is essentially an harmonic oscillator one, may 
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overestimate the dependence of the matrix elements sVM on the asymptotic 
quantum numbers.
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Appendix

General calculation of the restoring force and mass parameters.
We consider a system at its equilibrium deformation. We assume that 

we already know the values of Â, A and the Vv. We allow a small change, R, 
in the previous single-particle field. The matrix (131), with a = ^equilibrium’ 
ej = xSequilibrium, has to be modified by the addition of a term which is 
generally not diagonal

-(xR + Q)rva)=-grVM. (1A)

Q is again a Lagrange multiplier.
The quantities denoted by a prime will 

field. We shall expand in o and keep only
refer to the new single-particle 
linear terms.

Z = Z +

A'2 = A2 + oA2
(2 A)

We diagonalize the single-particle Hamiltonian by means 
ation theory

S P O ( / vv ^1)

of perturb-

(3 A)*

and use a procedure similar to 
for Ev and Ir2 are

Ev = Ev +

the one outlined in p. 12. fhe expressions

(4 A)

* Since the quadrupole operator is even under time-reversal (q, + w + = rv_wA it follows 
that the + sign in the second equation (3A) holds for both cv+ and cj/_. In consequence, 
H ' ■ = H ■ +0(o2). When this condition is not satisfied (i. e., for the Coriolis force) the fol­pan- pair - '
lowing treatment may not be valid.



Nr. 2 35

(5 A)

:

The solution of this system

1

I (6 A)

21

I VV t \

The two basic 
of the value of q. 
vanish, it follows

Âi = F

3 \ 1 
JL t-3

V J^v

equations (4) and (12) must be satisfied independently 
From the requirement that the terms proportional to o 
that

V /

of equations is

'V 11 N 7 rr \

+- y - = o
V r' j>

Using equations (3 A), (4 A) and (6 A), the new values of and Uv can be 
calculated. Then the new ground state wave function | O') can be expressed 
in the representation corresponding to the equilibrium deformation

+sXZ -’-6"''«u(4Æ+4ft)lo>.

V (O^V£(ü £V

Because of the identity (Ev + Ew) (UwVv- UvVM) = (lT(l)Vv+ UvVM)
the third term in (7 A), which contains non-diagonal single-particle matrix 
elements rvw, can be cast into the form

V-> rV(JD CO + t M\ v) + . zq « \
Q 2..------------- I 0 > • (8 A)

v,co \ttv+n'co)

, , J 
Using the relations < 0 | Rop ß^ I 0 > = rV(O (Uv V0J + Uw Vv) and 2 Uv Uv = —, 
and equations (7 A) and (8 A), we find v
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(9 A)

- o

2

(ÎOA)

/? = < 0' | 7?op | O'>

< 9 I Kop I 0 >
,. /I2 >• c

v v i 1 X” vy v
9 — r3
Z v I^v

from which the derivative and thus the restoring force (eq. 29), can be 
immediately obtained.

The calculation of the mass parameter is done according to the pre­
scriptions of the “crancking model”:

l<”“>l^|0>|2

E = 2 h £-----------------
r. to Ev + E(l)

I < wo | ^ | 0 > I2

— F + E, co J Jr •'-'co

,.2 ( n v 4 a v F„ ■'W11 va> V'Jvrco~'-7co’v/
1 (p + 77 )3V, CO \^V ' -^CO/

- V— //|2^2 . ^iEv

8V^\ 1 4 4d2

We see that if ^,^ = 0, il billows that Â1 = Zl2 = (). In this
v Ev v Ev

case, formulae (29) and (33) are correct. The first condition £ ~~ = 0 is
v Ev 

related to the non-conservation of the particle number (31). To interpret
/• g

the second condition V v\- = 0 we construct the two quasi-particle per-
V L^v 

turbed wave function in analogy to (27).

I (vco)' > = I VM y - Q
<0|flOpl^>

+ Er)
I £r/va> y, (11 A)

where | vw > = at| 0 > represents a four quasi-particle wave 
function. We require that the matrix element of /¥int between |<vco)'> and 
I O' y contains no linear term in o, and therefore can lead to no quadratic 
term in the expression for the total ground-state energy. From Appendix A 
of Belyaev*')  we have
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£ < fy va» I Hint I O > = - bvw ( itfVg + t'f U,! )
Î»/ Z £

< X I ^int I y£0 > = _ 9 l^vco^ (Uv Ec + ^yVf) + - EvVvUMVM] ■

The last term in (13A) is of order compared to the first, as 

no summation over all the single-particle states. Neglecting it
(27),  (11 A), (12 A), and (13 A),

<0' I Hmt I W')

^<^|ÄoJ0><0|Hint|^wo> ^<0|Äop|^X^|/fint|rco 
fy---------------—---- —-----------------H Q fy Li-,
fjj Eç + E^ Eç + E^

< 0 I Eop I > u-i-v?).

Thus the validity of (27) implies the vanishing of (14A). This
quires

< 0 I Eop ||£> = 0.

(12A)

(13A)

it contains

and using

■ (14A)

in turn re-

e
(15 A)
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